Do Gluons Carry Proton Spin? – toward resolving the "Spin Crisis"

Alexander Bazilevsky

Physics Department, BNL

Brookhaven Lecture January 21, 2009

Outline

Why Spin

Role of the Spin

Proton Spin Structure and Spin Crisis

Why Gluons

Role of Gluons

Probing Gluon Spin Contribution

What's next

Spin

Fundamental Concept in Physics

Appears in all levels: from galaxies to elementary particles

Spin

Spin is a fundamental quantum mechanical property of elementary particles (like mass, charge)

- Carries the same mathematical meaning as angular momentum (rotational motion in classical mechanics)
- ➤ Spin in quantum mechanics is quantized in units of Planck's constant h, and can be either integer (0, 1, 2 etc) or half-integer (1/2, 3/2 etc);
- **Proton**, **neutron** and **electron** are spin-1/2 particles

Spin plays central role in theory of strong interaction, Quantum Chromodynamics (QCD)

Spin and particle internal structure

Associated with particle spin is magnetic moment (like rotating electrically charged body)

$$\mu = g \frac{e}{2m} S$$

$$m - mass$$

$$S - spin$$

e – electric charge

From quantum theory (Dirac equation): g~2 for elementary (point-like) ½-spin particle Confirmed in the experiment for electrons and muons

Triumph of quantum theory!

$$\mu_p = (2.79) \cdot 2 \cdot \frac{e}{2M} S \equiv 2.79 \mu_N$$

Proton: $g \neq 2$!

$$\mu_p = (2.79) \cdot 2 \cdot \frac{e}{2M} S \equiv 2.79 \mu_N$$

$$\mu_n = (-1.91) \cdot 2 \cdot \frac{e}{2M} S \equiv -1.91 \mu_N$$

Neutron: non-zero magnetic moment for electrically neutral particle!

Nucleon Spin

Nucleons \equiv protons and neutrons

Quark Model: proton and neutron are made of three quarks

$$p = (uud)$$
$$n = (ddu)$$

	Charge	Spin		
u	+2/3e	1/2		
d	-1/3e	1/2		

	Charge	Spin		
p	+e	1/2		
n	0	1/2		

Compute proton (neutron) magnetic moment in terms of quark magnetic moments

$$\mu_p = \mu_u$$

$$\mu_n = -\frac{2}{3}\mu_u$$

$$\left. \begin{array}{c} \mu_p = 2.79 \mu_N \\ \mu_n = -1.91 \mu_N \end{array} \right\} \Rightarrow \frac{\mu_n}{\mu_p} \approx -\frac{2}{3}$$

In very good agreement with experimental data!

Another triumph?
So, quarks carry nucleon spin ?!

... Proton Spin Crisis

EMC (CERN) experiment: Deep Inelastic Scattering (DIS) of high energy polarized muons on polarized protons

Quark (and anti-quark) contribution to proton spin is small:

 $\Delta\Sigma$ =12 ±9(stat) ±14(syst) %

Nucl. Phys. B328, 1-35 (1989) – one of the most cited papers! >1200 citations

What carries the proton spin ?!

Proton Spin Structure

Partons \equiv (anti)quarks and gluons

Naïve quark model (only valence quarks):

$$\frac{1}{2} = \frac{1}{2} (\Delta u + \Delta d)$$

Quark contribution is small ⇒ Spin Crisis

+ gluons

strong force carrier

+ sea quarks

Quantum mechanical fluctuations $g \rightarrow q\bar{q}$

$$\frac{1}{2} = \frac{1}{2} (\Delta q + \Delta \overline{q}) + \Delta G \longrightarrow \frac{1}{2} = \frac{1}{2} (\Delta q + \Delta \overline{q}) + \Delta G + L_Z$$

For complete description include parton orbital angular momentum L_z :

$$\frac{1}{2} = \frac{1}{2} \left(\Delta q + \Delta \overline{q} \right) + \Delta G + L_Z$$

Determination of ΔG and $\Delta \overline{q}$ is the main goal of the RHIC spin program

Probing Proton Structure

Virtuality (4-momentum transfer²)

Q² gives the distance scale **r** at which the proton is probed.

 $r \approx hc/Q = 0.2 fm/Q [GeV]$

HERA ep collider: $r_{min} \approx 1/1000$ proton diameter

 $E_e = 27.5 \text{ GeV}, E_p = 920 \text{ GeV}$

Parton Distribution Functions (PDF) or parton densities

Proton

 x_k – fraction of proton momentum carried by parton k; so $0 < x_k < 1$

Momentum Sum Rule: $\sum_{k} x_{k} = 1$ (Gluons carry ~1/2 of the proton momentum)

f(x) - Parton Distribution Function (PDF): probability for a parton to carry fraction x of the proton momentum

Higher probe Q^2 – better resolution

Start resolving more virtual (short life) stuff, sea quarks and gluons with lower x So, different Q^2 probes see proton structure differently: $f(x) \rightarrow f(x,Q^2)$ Once $f(x,Q^2)$ is known at some Q_0^2 scale, it can be calculated for any other Q^2

Polarized PDF

$$q = u,d,s \dots$$

Quark Proton spin spin

helicity (longitudinal spin) distribution

$$\Delta q(x,Q^2) =$$

unpolarised distribution

$$q(x,Q^2) =$$

helicity (longitudinal spin) distribution

$$\Delta g(x,Q^2)$$

unpolarised distribution

$$g(x,Q^2) =$$

Gluons

Polarized PDF from DIS

Asymmetry Analysis Collaboration M. Hirai, S. Kumano and N. Saito, PRD69, 054021 (2004)

- Valence distributions well determined
- Sea Distribution poorly constrained
- Gluon very poorly constrained: can be either positive, 0, negative!

From inclusive polarized DIS ...

Utilizes virtual photon to probe nucleon spin structure

- ✓ Only information about input and scattered lepton (e, μ) is recorded x and Q^2 reconstructed from kinematics
- ✓ Does not distinguish quark and antiquark Scattering ~charge²
- ✓ Do not have direct access to gluon

 Probe it through scaling violation (Q²
 dependence of quark PDFs) with very poor precision currently

Change in Δq vs Q^2 is defined by the probability that quark and gluon radiate quark

... To polarized pp collider

Utilizes strongly interacting probes

- ✓ Probes gluon directly
- ✓ Higher energies ⇒ clean pQCD interpretation
 100 GeV protons on fixed target: √s=14 GeV
 100 GeV + 100 GeV protons at a collider: √s=200 GeV
- ✓ Elegant way to explore quark and anti-quark polarizations through W production

Polarized Gluon Distribution Measurements (ΔG):

- ✓ Use a variety of probes
 Access to different gluon momentum fraction x
 Different probes different systematics
- ✓ Use different beam energies

 Access to different gluon momentum fraction x

RHIC as polarized proton collider

RHIC Progress

Parameter	Unit	2002	2003	2004	2005	2006
No. of Bunches	-1	55	55	56	106	111
Bunch Intensity	10^{11}	0.7	0.7	0.7	0.9	1.3
Store Energy	GeV	100	100	100	100	100
β*	m	3	1	1	1	1
Peak Luminosity	10 ³⁰ cm ⁻² s ⁻¹	2	6	6	10	<u>35</u>
Average Luminosity	10 ³⁰ cm ⁻² s ⁻¹	1	4	4	6	<u>20</u>
Collision points		4	4	4	3	2
Time in store	%	30	41	38	56	46
Average Polarization, store	%	15	35	46	50	<u>60</u>

PHENIX and STAR

PHENIX:

High rate capability
High granularity
Good mass resolution and PID
Limited acceptance

STAR:

Large acceptance with azimuthal symmetry Good tracking and PID Central and forward calorimetry

Observables

High Energy Proton scattering can be seen as a scattering of constituent partons: gg, qg, qq

Quarks and gluons are not seen directly

They are locked within hadrons (confinement): baryons (protons, neutrons etc.) and mesons (pions, kaons etc)

Partons from hard scattering evolve via radiation and hadronization (fragmentation) processes to form "sprays" of nearly collinear hadrons - Jet

Observable:

Either the whole **Jet** or its "fragments" (**hadrons**)

RHIC Spin Measurements

Check theory (pQCD) works

Extract polarized PDF from spin asymmetries using pQCD

This exp. Other exp. Theory

Jet Yield Spin Asymmetry

$$= \Delta q \otimes \Delta g \otimes \Delta \hat{\sigma}$$
Extract!

Particle Yield in pp

PHENIX: $pp \rightarrow \pi 0 X$ PRD 76, 051106 (R)

Good agreement between theory (pQCD) calculations and data ⇒ confirmation that pQCD can be used to extract spin dependent pdf's from RHIC data.

• Same comparison fails at lower energies

Probing ΔG in pol. pp collisions

$$A_{LL} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}}$$

 σ^{++} - particle production from beam with the same helicity

 σ^{+-} - particle production from beam with the opposite helicity

For inclusive Jet or hadron production:

Double longitudinal spin asymmetry A_{LL} is sensitive to ΔG

As a quadratic function

Measuring A_{LL}

$$A_{LL} = \frac{d\sigma_{++} - d\sigma_{+-}}{d\sigma_{++} + d\sigma_{+-}} = \frac{1}{|P_1P_2|} \frac{N_{++} - RN_{+-}}{N_{++} - RN_{+-}}; \qquad R = \frac{L_{++}}{L_{+-}}$$

- (N) Yield
- (R) Relative Luminosity (collision rate)
- (P) Polarization

- ✓ Bunch spin configuration (+ or helicity) alternates every 106 ns
- ✓ Data for all bunch spin configurations are collected at the same time
- ⇒ Possibility for false asymmetries is greatly reduced

A_{LL}: jets

STAR Preliminary Run2006 ($\sqrt{s}=200 \text{ GeV}$)

GRSV Models:

" $\Delta G = G$ ": $\Delta G(Q^2 = 1 \text{ GeV}^2) = 1.9$

" $\Delta G = -G$ ": $\Delta G(Q^2 = 1 \text{ GeV}^2) = -1.8$

" $\Delta G = 0$ ": $\Delta G(Q^2 = 1 \text{GeV}^2) = 0.1$

" $\Delta G = std$ $\Delta G(Q^2 = 1 GeV^2) = 0.4$

Large and modest gluon polarization scenarios are not consistent with data

Run2003&2004: PRL 97, 252001

Run2005: PRL 100, 232003

A_{LL} : $\pi 0$

PHENIX Run2006 (√s=200 GeV) arXiv:0810.0694

Statistical precision of RHIC A_{LL} data started to dominate in ΔG constraint

Run3,4,5: PRL 93, 202002; PRD 73, 091102; PRD 76, 051106 (R)

From $A_{LL}(p_T)$ to $\Delta g(x_{gluon})$

Generate $\Delta g(x)$ curves for different $\Delta G = \int_{0}^{1} \Delta g(x) dx$ Calculate $A_{LL}(p_T)$ for each ΔG

Compare A_{LL} data to curves (produce χ^2 vs ΔG): $\chi^2 = \sum_{p_T bins} \frac{\left(A_{LL}^{data} - A_{LL}^{theory}\right)^2}{\sigma_{stat}^2}$

$$\chi^{2} = \sum_{p_{T} bins} \frac{\left(A_{LL}^{data} - A_{LL}^{theory}\right)^{2}}{\sigma_{stat}^{2}}$$

From pQCD:

$$p_T = 2-12 \text{ GeV/c} \rightarrow$$

 $x_{gluon} = 0.02 - 0.3$

Stat.error: $\Delta G_{GRSV}^{x=[0.02,0.3]} \left(\mu^2 = 4 \, GeV^2 \right) = 0.2 \pm 0.1 \, (1\sigma)$ and $0.2_{-0.8}^{+0.2} \, (3\sigma)$

Syst.exp.error: ± 0.1

ΔG: Global Fit

Daniel de Florian Rodolfo Sassot Marco Stratmann Werner Vogelsang

- PRL 101, 072001(2008)
- First truly global analysis of polarized DIS, SIDIS and RHIC results

Uncertainty estimation:

$$\Delta \chi^2 = 1$$
 (optimistic)
 $\Delta \chi^2 / \chi^2 = 2\%$ (conservative)

... Truth is in between

ΔG : From DIS to RHIC

DIS: AAC-2004

DIS+RHIC: DSSV-2008

RHIC data constrains ΔG at 0.02<x<0.3

$$\Delta G^{x>0.02} = 0.5 \pm 1.3$$

$$\Delta G^{x>0.02} = 0.0 \pm 0.1$$

"Optimistic" error estimation: $\Delta \chi^2 = 1$

$$\Delta G^{x>0.02} = 0.0^{+0.3}_{-0.2}$$

"Conservative" error

estimation: $\Delta \chi^2/\chi^2 = 2\%$

Considerable improvement in ΔG determination

(a lot of work still needed for correct error estimation)

So, the Proton Spin

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z$$

(Anti)quark Contribution: 0.10–0.15 Gluon
Contribution:
~0?

Parton Orbital Momentum:

Data are sensitive to $\Delta G = \int \Delta g(x) dx$ at 0.02<x<0.3 Need to extend x range

...Spin Crisis arose after getting access to lower x

Data are not sensitive to the shape of $\Delta g(x)$ Need back-to-back processes

ΔG at RHIC: what's next

- □ Improve exp. uncertainties and move to higher p_T (higher x)
- □ Different channels
 - ✓ Different systematics
 - \checkmark Different x
 - ✓ $gq \rightarrow g\gamma$ sensitive to ΔG sign

- \Box Different \sqrt{s} (colliding beam energy)
 - \checkmark Different x
 - ✓ Important cross check: measurements for the same x at different Q^2

Improve exp. uncertainties

Need more FOM= P^4 L (stat. uncertainty ~ $1/\sqrt{FOM}$)

A factor of 3-4 reduction in stat. errors expected in next \sqrt{s} =200 GeV RHIC Run (2009 or 2010)

$pp \rightarrow \text{jet} + \text{jet}$

$$M_{Jet-Jet} = \sqrt{x_1 x_2 s}$$

$$\eta_3 + \eta_4 = \log \frac{x_1}{x_2}$$

$$\eta = -\ln\left(\tan\frac{\Theta}{2}\right)$$

Parton kinematics (x_{gluon}) is well constrained Sensitivity not only to the integral ΔG but also to the shape $\Delta g(x)$

Better sensitivity to ΔG compared to inclusive jet measurements $pp \rightarrow jet + X$

Higher *x* asymmetries are not diluted by low *x* asymmetries as in inclusive measurements

More exclusive triggering (smaller background)

$pp \rightarrow \gamma + X$

$$A_{LL} = \frac{\Delta g(x_1)}{g(x_1)} \bigotimes \frac{\sum_{i=u,d,s} e_i^2 \Delta q_i(x_2)}{\sum_{i=u,d,s} e_i^2 q_i(x_2)} \bigotimes \widehat{\alpha}_{LL}(gq \to q\gamma)$$

(Anti)quark polarization from DIS

Partonic level asymmetry from theory

Golden channel:

- ✓ Theoretically clean
- ✓ Small contamination (~15% from qq-bar annihilation
- ✓ Linear in $\Delta G \Rightarrow \text{sign of } \Delta G$
- ✓ Rare probe (needs a lot of luminosity)

Flavor decomposition

Fixes (anti)quark flavor and its spin direction

$$\Delta d + \overline{u} \rightarrow W^{-}$$

$$\Delta \overline{u} + d \rightarrow W^{-}$$

$$\Delta \overline{d} + u \rightarrow W^{+}$$

$$\Delta u + \overline{d} \rightarrow W^{+}$$

Measured through longitudinal single spin asymmetry A_L in W^{\pm} production at \sqrt{s} =500 GeV

First data expected in a few weeks!

eRHIC

Electron – Proton (and Ion) Collider

- ➤ Precise imaging gluon and sea quarks in the proton
- Get access to parton orbital momentum

- ➤ Electron energy range from 3 to 20 GeV
- \triangleright Peak luminosity of 2.6×10^{33} cm⁻²s⁻
- ➤ High electron beam polarization (~80%)

Summary

Proton Spin

So, Do Gluons Carry Proton Spin? – Current data indicate on small or zero contribution

Higher precision and extended x range measurements of ΔG are necessary (RHIC, eRHIC etc.)

World wide quest in determining the parton orbital angular momentum contribution (JLab, eRHIC etc.)

The Story of Spin Sin-Itiro Tomonaga

It is a mysterious beast, and yet its practical effect prevail the whole of science. The existence of spin, and statistics associated with it, is the most subtle and ingenious design of Nature - without it the whole universe would collapse.